Rabu, 21 November 2012

Real number (Mathematics)

A symbol of the set of real numbers (ℝ)
Real numbers can be thought of as points on an infinitely long number line
.
In mathematics, a real number is a value that represents a quantity along a continuous line. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers such as √2 (1.41421356... the square root of two, an irrational algebraic number) and π (3.14159265..., a transcendental number). Real numbers can be thought of as points on an infinitely long line called the number line or real line, where the points corresponding to integers are equally spaced. Any real number can be determined by a possibly infinite decimal representation such as that of 8.632, where each consecutive digit is measured in units one tenth the size of the previous one. The real line can be thought of as a part of the complex plane, and correspondingly, complex numbers include real numbers as a special case.

These descriptions of the real numbers are not sufficiently rigorous by the modern standards of pure mathematics. The discovery of a suitably rigorous definition of the real numbers — indeed, the realization that a better definition was needed — was one of the most important developments of 19th century mathematics. The currently standard axiomatic definition is that real numbers form the unique Archimedean complete totally ordered field (R,+,·,<), up to isomorphism, whereas popular constructive definitions of real numbers include declaring them as equivalence classes of Cauchy sequences of rational numbers, Dedekind cuts, or certain infinite "decimal representations", together with precise interpretations for the arithmetic operations and the order relation. These definitions are equivalent in the realm of classical mathematics.
The reals are uncountable, that is, while both the set of all natural numbers and the set of all real numbers are infinite sets, there can be no one-to-one function from the real numbers to the natural numbers: the cardinality of the set of all real numbers (denoted \mathfrak c and called cardinality of the continuum) is strictly greater than the cardinality of the set of all natural numbers (denoted \aleph_0). The statement that there is no subset of the reals with cardinality strictly greater than \aleph_0 and strictly smaller than \mathfrak c is known as the continuum hypothesis. It is known to be neither provable nor refutable using the axioms of Zermelo–Fraenkel set theory, the standard foundation of modern mathematics, provided ZF set theory is consistent.

Basic properties

A real number may be either rational or irrational; either algebraic or transcendental; and either positive, negative, or zero. Real numbers are used to measure continuous quantities. They may in theory be expressed by decimal representations that have an infinite sequence of digits to the right of the decimal point; these are often represented in the same form as 324.823122147… The ellipsis (three dots) indicate that there would still be more digits to come.
More formally, real numbers have the two basic properties of being an ordered field, and having the least upper bound property. The first says that real numbers comprise a field, with addition and multiplication as well as division by nonzero numbers, which can be totally ordered on a number line in a way compatible with addition and multiplication. The second says that if a nonempty set of real numbers has an upper bound, then it has a least upper bound. The second condition distinguishes the real numbers from the rational numbers: for example, the set of rational numbers whose square is less than 2 is a set with an upper bound (e.g. 1.5) but no least upper bound: hence the rational numbers do not satisfy the least upper bound property.

In physics

In the physical sciences, most physical constants such as the universal gravitational constant, and physical variables, such as position, mass, speed, and electric charge, are modeled using real numbers. In fact, the fundamental physical theories such as classical mechanics, electromagnetism, quantum mechanics, general relativity and the standard model are described using mathematical structures, typically smooth manifolds or Hilbert spaces, that are based on the real numbers although actual measurements of physical quantities are of finite accuracy and precision.
In some recent developments of theoretical physics stemming from the holographic principle, the Universe is seen fundamentally as an information store, essentially zeroes and ones, organized in much less geometrical fashion and manifesting itself as space-time and particle fields only on a more superficial level. This approach removes the real number system from its foundational role in physics and even prohibits the existence of infinite precision real numbers in the physical universe by considerations based on the Bekenstein bound.

In computation

Computer arithmetic cannot directly operate on real numbers, but only on a finite subset of rational numbers, limited by the number of bits used to store them, whether as floating-point numbers or arbitrary precision numbers. However, computer algebra systems can operate on irrational quantities exactly by manipulating formulas for them (such as \textstyle\sqrt 2, \textstyle\arcsin \left({{2}\over{23}}\right), or\textstyle\int_{0}^{1}  {x^{x}}\;dx) rather than their rational or decimal approximation; however, it is not in general possible to determine whether two such expressions are equal.
A real number is called computable if there exists an algorithm that yields its digits. Because there are only countably many algorithms, but an uncountable number of reals, almost all real numbers fail to be computable. Moreover, the equality of two computable numbers is an undecidable problem. Some constructivists accept the existence of only those reals that are computable. The set of definable numbers is broader, but still only countable.

Notation

Mathematicians use the symbol R (or alternatively,  \mathbb{R} , the letter "R" in blackboard bold, Unicode – U+211D) to represent the set of all real numbers (as this set is naturally endowed with a structure of field, the expression field of the real numbers is more frequently used than set of all real numbers). The notation Rn refers to the Cartesian product of n copies of R, which is an n-dimensional vector space over the field of the real numbers; this vector space may be identified to the n-dimensional space of Euclidean geometry as soon as a coordinate system has been chosen in the latter. For example, a value from R3 consists of three real numbers and specifies the coordinates of a point in 3-dimensional space.
In mathematics, real is used as an adjective, meaning that the underlying field is the field of the real numbers (or the real field). For example real matrix, real polynomial and real Lie algebra. As a substantive, the term is used almost strictly in reference to the real numbers themselves (e.g., The "set of all reals").

History

Vulgar fractions had been used by the Egyptians around 1000 BC; the Vedic "Sulba Sutras" ("The rules of chords") in, ca. 600 BC, include what may be the first 'use' of irrational numbers. The concept of irrationality was implicitly accepted by early Indian mathematicians since Manava (c. 750–690 BC), who were aware that the square roots of certain numbers such as 2 and 61 could not be exactly determined. Around 500 BC, the Greek mathematicians led by Pythagoras realized the need for irrational numbers, in particular the irrationality of the square root of 2.
The Middle Ages brought the acceptance of zero, negative, integral, and fractional numbers, first by Indian and Chinese mathematicians, and then by Arabic mathematicians, who were also the first to treat irrational numbers as algebraic objects, which was made possible by the development of algebra. Arabic mathematicians merged the concepts of "number" and "magnitude" into a more general idea of real numbers. The Egyptian mathematician Abū Kāmil Shujā ibn Aslam (c. 850–930) was the first to accept irrational numbers as solutions to quadratic equations or as coefficients in an equation, often in the form of square roots, cube roots and fourth roots.
In the 16th century, Simon Stevin created the basis for modern decimal notation, and insisted that there is no difference between rational and irrational numbers in this regard.
In the 17th century, Descartes introduced the term "real" to describe roots of a polynomial, distinguishing them from "imaginary" ones.
In the 18th and 19th centuries there was much work on irrational and transcendental numbers. Johann Heinrich Lambert (1761) gave the first flawed proof that π cannot be rational; Adrien-Marie Legendre (1794) completed the proof, and showed that π is not the square root of a rational number. Paolo Ruffini (1799) and Niels Henrik Abel (1842) both constructed proofs of Abel–Ruffini theorem: that the general quintic or higher equations cannot be solved by a general formula involving only arithmetical operations and roots.
Évariste Galois (1832) developed techniques for determining whether a given equation could be solved by radicals, which gave rise to the field of Galois theory. Joseph Liouville (1840) showed that neither e nor e2 can be a root of an integer quadratic equation, and then established existence of transcendental numbers, the proof being subsequently displaced by Georg Cantor (1873). Charles Hermite (1873) first proved that e is transcendental, and Ferdinand von Lindemann (1882), showed that π is transcendental. Lindemann's proof was much simplified by Weierstrass (1885), still further by David Hilbert (1893), and has finally been made elementary by Adolf Hurwitz and Paul Gordan.
The development of calculus in the 18th century used the entire set of real numbers without having defined them cleanly. The first rigorous definition was given by Georg Cantor in 1871. In 1874 he showed that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs, his first method was not his famous diagonal argument, which he published in 1891.

0 komentar:

Posting Komentar